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HANDLEBODIES AND p-CONVEXITY

JI-PING SHA

The aim of this paper is to study the Riemannian geometry of manifolds
with boundary. In a previous paper [4], the author proved the following
theorem. .

Let M be a compact connected manifold with nonempty boundary. If M admits
a Riemannian metric with nonnegative sectional curvature and p-convex boundary,
then M has the homotopy type of a CW-complex of dimension <p — 1.

Note. The author has recently learned that this theorem has also been
proved independently by H. Wu [3].

One of the main results of this paper is a converse of this theorem.

We begin by recalling the notion of p-convexity. Let X be an (n — 1)-
dimensional (normally oriented) hypersurface in a Riemannian manifold £
and let A\, <A, < .-+ < A,_; be its principal curvature functions. X is
called p-convex if A; + --- +A, > 0 at each point of X. Note in particular
that “l-convexity” is the usual notion of convexity; “(n — 1)-convexity”
means that X has positive mean curvature. Also note that p-convexity implies
(p + 1)-convexity.

In [3], by a handle-attaching process, Lawson and Michelsohn showed the
following: Suppose X has positive mean curvature and let X' be a hypersurface
obtained from X by attaching an ambient k-handle to the positive side of X. If the
codimension (n — k) of the handle is > 2, then X' can be constructed also to
have positive mean curvature. (That is to say that X’ is ambiently isotopic to a
hypersurface of positive mean curvature.)

Our central result is a generalization of this theorem to the p-convex case.
Specifically we shall prove the following.

Theorem 1. Let X be a (normally oriented) p-convex hypersurface in a
Riemannian manifold Q, and let X' be a hypersurface obtained from X by
attaching a k-handle D* to the positive side of X. If k < p — 1, then X’ can be
constructed also to be p-convex.
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Arguing as in [3] we get the following.

Corollary 2. Let X be a compact manifold embedded as the boundary of a
domain D in a Riemannian manifold Q. Orient X with respect to the inward
pointing normal vector. If D is diffeomorphic to a handlebody of dimension

< p — 1, then X is ambiently isotopic through mutually disjoint embeddings to a
p-convex hypersurface X' in Q. The new hypersurface X’ bounds a domain D’
which is diffeomorphic to D.

Applying this together with the fundamental results of Gromov in [1] we
then obtain the following result which is a converse to the theorem in {4].

Theorem 3. Let M be a compact connected manifold with nonempty boundary.
If M is a handlebody with handles only of dimension < p — 1, then M supports a
Riemannian metric with positive sectional curvature and p-convex boundary.

In fact, by the theorem of Gromov the sectional curvature of M can be
e-pinched for any & > 0. If M is parallelizable, then by immersion-submersion
theory (cf. [2]) there exists an immersion M <= S”(1) where n = dim M. By
pulling back the constant curvature metric from $”(1) and proceeding as in
Theorem 3, we have the following.

Theorem 4. Let M be as in Theorem 3. If M is parallelizable and is a
handlebody with handles only of dimension < p — 1, then M supports a Rieman-
nian metric with constant sectional curvature 1 and p-convex boundary.

The remainder of the paper is devoted to proving Theorem 1. Since our basic
set-up closely follows Lawson and Michelsohn [3], our presentation will be
brief. The basic picture is shown in Figure 1.

— D)) —

Ficure 1

1. The basic set-up
Assume £ is connected. Let X be as in Theorem 1. Positive mean curvature
(implied by p-convexity) implies a well-defined normal direction to Xj i.e., we
have an embedding of X X (—1,1) in € with the image of X X 0 identified to
X. Let X* be the union of components of €\ X containing X X (0, 1), and
X~ be the union of components of &\ X containing X X (—1,0).



HANDLEBODIES AND p-CONVEXITY 355

Let D* be a k-dimensional disk orthogonally attached to X in X*. Set, for
x e Q,
s(x) = dist(x, X), r(x) = dist(x, D¥).
Then there exists a neighborhood &; of X in Q such that s is smooth in
Q) = Q,\ X~ and ||vs|| = 1. Similarly, there exists a neighborhood €, of D*
such that r is smooth in €5 = Q,\ (X U D¥) and ||[vr| = 1. Then r I(r,) N
2} is a hypersurface in ) for any sufficiently small 7, > 0.
Hence, the map
(r,s): QN Q, >R
is a smooth submersion. Our idea is to construct a regular curve y which is
essentially the graph of some function s = f(r) in R?, so that the hypersurface
S, = (r,s)"(y) joins r~!(gy) to X smoothly for some &, > 0, and the whole
new hypersurface obtained will still be p-convex.

Recall that the second fundamental form of the level hypersurface of a
function is closely related to its Hessian form. We summarize this fact in the
following.

Lemma 1. Ler u be a smooth function on a domain of Q. Then at every point
the 2-form v *u defined by

viu(-,-) = Hess, (-, -) = (v (Vu),-)
is symmetric. Furthermore, if |V u|| = 1, then Vu lies in the null space of Vv *u,
and when restricted to Vu*, v *u is the second fundamental form of the level
hypersurface of u with respect to —Vu.

Proof. See[3]. q.ed.

Suppose u is a function as in Lemma 1. Let

}\1 < }\2 < -0 < A
be the eigenvalues of v ?u. We denote by o,(m) the sum A; + --- +A, for
m=1,---,n.

Remark. Note that by Lemma 1, vu is an eigenvector of v 2u, the
corresponding eigenvalue is 0. The other (n — 1) eigenvalues are the principal
curvatures of the level hypersurface of u. We then clearly have that the level
hypersurface is p-convex if and only if o,( p + 1) is positive.

Lemma 2. (i) We can choose Q, such that there exists a constant 8§ > 0 for
which o (p +1)> 8 in Q. (Here & could be replaced by a smooth positive
function.)

(i) We can choose Q, such that o,(p + 1) > c¢/r in @, \ (X~U D*), where
¢ > 0 is a constant.

Proof. (i) is from the p-convexity of X.

(ii) is by a calculation in Fermi coordinates and the fact that k <p — 1 as
follows.

n
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Choose locally smooth orthonormal vector fields e,,- - -, e, along D* such
that e,,- - -, e, are tangent to D* and that e, ,,- - -, e, are normal to D*. Then
for £ € D, (xy, -+, x,_;) € R"F with x{ + - -+ +x2_, small, the map

(5’ (Xh' ) xn—k)) - eXPg(x1ek+1 + o +xn—ken)
gives a local coordinate in some open set W C ,. Extend e,,- - -, e, to smooth
vector fields &,,---, &, on W, where each é, is obtained by parallel translation
of e; along the geodesic
a(1) = expe[1(xe) + - +x,¢,)],  O0<i<L
On W, it is clear that

r(g’(xlv'”’xn—k)) = \/)?12 + - +xr%~k

and that
— 1 - >
vr= 7(X1ek+1 + .- +xn—ken)'

If the metric were Euclidean, i.e., if all the & s were parallel, we would
obviously have

o(p+1)=(p—k)/r.

In general, let Vi, --, ¥, be arbitrary (p + 1) orthonormal tangent vectors
at some point in W. We have that
p+1 p+1

X vir(v.v)= 2 vir(V,v)
i=1 i=1

ptl X X
(*) + v%(%(vyiékﬂ,l/,)jt et ";"(vKé,,,V,.)),
where ¥ 2r denotes the Hessian of » under the Euclidean metric. Then the first
sum in (*) is > (p — k)/r. The second sum in (*) can clearly be bounded by
some fixed constant which is independent of r. Therefore by choosing £2,
properly and noting that p — k > 1, there exists a constant ¢ > 0 such that
o(p+1)>c/r
in 2,\ (X U D).

2. The bending function
Let 8, &, &,, and ¢, be fixed positive constants. Qur aim in this section is to
construct a smooth function f which is defined on r > ¢, for some 0 < ¢, < g
such that
f(r)y=0 for r > ¢;
f(ry<o for r > ¢g;

f(r) > e3<ey, asr—e;.
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All the derivatives of f — oo in absolute value as r — ¢; (see Figure 2).
Furthermore, f satisfies either of the following conditions for r > &,

§—f"(r) - ‘—COfr/(r) >0 or &-— f(r) - <of () > 0.

O
We begin by choosing f;” properly to get a smooth function f; such that
fi(r)=0 forr > ¢;;
fi(r)<o for all r;

0 <f/(r)=constant <8 forr <g/2;

[ 1 ]>1. Co[—f1’(£1/2)13<£1_.

€Xp 7 ’
2eofi(e,/2) (0) 2
3
Co["fll(sl/z)] 1 dt
0) + - = <eg, foralll/> 1.
70) 7(0) 1h facgnr
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All the requirements can be satisfied by choosing f,"(0) small and then by
choosing the area of the shaded part in Figure 3 small and also by noting that

— > 0 as/— oo,
lf clnt

therefore, in particular, it is bounded forl> 1.
Now set

R S _ ol =fila/)]
- P ’ 2 € = 7” -
2Cof1(51/2) af (0)

Then a > 1 and ag; < ¢, /2 by the construction of f,.
Define for r > ¢,

fz( )_f

2¢q ln(t/fo)
We have
B 1 N 1
filr) = - 2¢oIn(r/e) ’ /) = 2vm(ln(r/eo))3/2r.
Hence

fzﬁ(")2 " Cofz’(r) _
f{(r) g

Finally, let
f( )__ f1(51/2)+f2(") for gy < r < agg,
T filr — agg + &,/2)  forr > as,.

Then it is easy to verify that f; is C? and satisfies all the conditions required
for f. In fact when r > ag,

8= f'(r) =
by the construction of f, and when ¢, < r < ag,
_ £(r) _ cof3(r) -5 — 7(r) _ cof(r)
f3'(r)2 4 2”(r)2 4

The required f is then gotten by a smoothing of f.

c0f3’(r) -0
r

=8> 0.

3. The construction of X"’
Let D,={xe€Q: r(x)<e} and X, = {x € Q: s(x)<e} be tubular
neighborhoods of D% and X respectively.
There exist ¢,e, >0 such that D, < Q,, X, <& and such that
(vr,vs)|<1inU={x€D,, N X, NX"r(x)>0}
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Let v be the curve s = f(r) as in Figure 2. The hypersurface S, = (r,s)7}(y)
smoothly joining X\ (X N U) to 3D, \ (3D, N U) produces a new hyper-
surface which will be our hypersurface X’ obtained from X by attaching the
handle D* (see Figure 4).

oD
o

FIGURE 4

We claim that X" is p-convex. It only needs to be verified at the part of S,
where r > g,. For this part, S, is the level set of the smooth function

F(x) = s(x) — f(r(x)). '
We have

VF=vs—f'(r)vr,
VI = v - ()~ f(r)(vr).
Let e, = VF/||VF||. The second fundamental form of S, is given by

v v(|vE[)vF

Bp(, ) =(V ) = -
IvF| 2 vF|’
Clearly B.(e,,e,) = 0and

v. (IVFI)v, F = v, (IVFI){e, VF)

vl F||<V’F><n I >

= UV VF,VF) = 2vF(VF,VF)
= 2[Vi(VF,VF) - f(r)V 2 (VE,VF)| = 2|VF |’ f"(r)(v,.r)

= 2] £ (r)'V3s(vr,9r) = f ()9 2r(9s,v5)| = 2V () (v.,r),
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where the last equality is obtained by recalling that vs is in the null space of
v %s and that vr is in the null space of V.
Then

VIVFDVE ) g 2

2|vF| IIVFH

[f (1w (vs,vs) = f(r)Yvis(vr, Vr)]
[ F\I

Now suppose that ey,---, e, are orthonormal vectors tangent to s,. Then
veiF=0fori=1,---,p
Therefore

5 By(ee) = X Brlese) + Brlee)

” FH Z[V s(e,e) = f'(r)vr(e,e) —f7(r)(v. r)]
L %(e e, ) — f(rYv2r(e ” 2
tiopr[Ts(ene) =T e, ) -1 (9.0
o )
+— 3[f’(")vz"(VS,Vs)—ff(r)zvzs(Vr,Vr)]
IvF|
1 , b
> IVF| ["s(P+1)—f(r)0,(P+1) 1 )I;(ve, )]
- 3[f’(r)vzr(vs’vs)_f'('")zvzs(Vr,Vr)],
IvF|
S 1 Canle 1 |9 (9s,Vs)
> [VF| ¥ ”anz ;
z| /1 (es(ornl) - <r>i<ve,,r>2}.
”v . i=1
Note that

lim rv?r(vs,vs) =0
r—0
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in U, and that

f(r) 1'(r)

IvFI* 1+ /() = 2/°(r)(vr.vs)

are bounded in U. It is then easy to see that we can choose &, ¢,, ¢, so that

P ’
Y Boene) > ——[5— 2L oy
1 IvFll r
or (note that v, 7 = v, s/f'(r))
’ 1 cof '(r)  f"(r)
B i»€i}) = 8 — . - N
D T} L TR

Therefore by the construction of f, s is p-convex.

vis(vr,vr),
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